Limit Fungsi Trigonometri
Tujuan Pembelajaran:
Menentukan nilai limit fungsi trigonometri.
Konsep Limit
Ingat pengertian limit seperti pada https://kelasadem.github.io/matematika-sma/limit/.
Di sini ditulis ulang pengertian limit secara intuitif
.
Kita akan meninjau nilai \(f(x)=\dfrac{\sin{x}}{x}\) di sekitar \(x=0\), yaitu menentukan nilai \(\lim\limits_{x\to{0}}\dfrac{\sin{x}}{x}\).
Perhatikan tabel berikut.
\(x\) | -0,1 | -0,01 | -0,001 | 0 | 0,001 | 0,01 | 0,1 |
\(f(x)=\dfrac{\sin{x}}{x}\) | 0,99833 | 0,99998 | 0,9999998 | ? | 0,9999998 | 0,99998 | 0,99833 |
Kita dapat melihat bahwa:
- saat \(x\) mendekati 0 dari arah kiri, nilai \(\dfrac{\sin{x}}{x}\) mendekati 1, kita tulis \(\lim\limits_{x\to{0^-}}\dfrac{\sin{x}}{x}=1\). Ini kita sebut limit kirinya.
- saat \(x\) mendekati 0 dari arah kanan, nilai \(\dfrac{\sin{x}}{x}\) mendekati 1 juga, kita tulis \(\lim\limits_{x\to{0^+}}\dfrac{\sin{x}}{x}=1\). Ini kita sebut limit kanannya.
- Karena limit kiri dan limit kanan bernilai sama, maka dapat kita simpulkan bahwa \(\lim\limits_{x\to{0}}\dfrac{\sin{x}}{x}=1\)
Teorema Limit
Contoh 1
Ingat:
\(\lim\limits_{x \to c} k = k\)
Maka
\(\lim\limits_{x \to 0} \pi = \pi\)
Ingat:
\(\lim\limits_{x \to c} x = c\)
Maka
\(\lim\limits_{x \to \frac{1}{4}\pi} x = \frac{1}{4}\pi\)
Ingat:
\(\lim\limits_{x \to c} k\cdot f(x) = k \times \lim\limits_{x \to c} f(x)\)
Maka
\[\begin{align*}\lim\limits_{x \to \frac{1}{6}\pi} 8\sin{x} &= 8\times \lim\limits_{x \to \frac{1}{6}\pi} \sin{x} \\ &= 8\times \sin{\frac{1}{6}\pi} \\ &= 8\times \frac{1}{2} \\ &= 4\end{align*}\]
Ingat:
\(\lim\limits_{x \to c} \left( f(x) \pm g(x) \right) = \lim\limits_{x \to c} f(x) \pm \lim\limits_{x \to c} g(x)\)
Maka
\[\begin{align*} \lim\limits_{x \to \frac{1}{3}\pi} \left( \sin{x}+\cos{x}-\tan{x} \right) &= \lim\limits_{x \to \frac{1}{3}\pi} \sin{x} + \lim\limits_{x \to \frac{1}{3}\pi} \cos{x} - \lim\limits_{x \to \frac{1}{3}\pi} \tan{x} \\ &= \sin{\frac{1}{3}\pi} + \cos{\frac{1}{3}\pi} - \tan{\frac{1}{3}\pi} \\ &= \frac{1}{2}\sqrt{3} + \frac{1}{2} -\sqrt{3} \\ &= \frac{1}{2} - \frac{1}{2}\sqrt{3} \\ &= \frac{1}{2}\left(1-\sqrt{3}\right) \end{align*}\]
Ingat:
\(\lim\limits_{x \to c} \left( f(x) \times g(x) \right) = \lim\limits_{x \to a} f(x) \times \lim\limits_{x \to a} g(x)\)
Maka
\[\begin{align*} &\lim\limits_{x \to \frac{1}{4}\pi} \sin{x}\times\cos{x} \\ &= \lim\limits_{x \to \frac{1}{4}\pi} \sin{x} \times \lim\limits_{x \to \frac{1}{4}\pi} \cos{x} \\ &= \sin{\frac{1}{4}}\times\cos{\frac{1}{4}} \\ &= \frac{1}{2}\sqrt{2}\times\frac{1}{2}\sqrt{2} \\ &= \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{2}{4}=\frac{1}{2} \end{align*}\]
Ingat:
\(\lim\limits_{x \to c} \dfrac{f(x)}{g(x)} = \dfrac{\lim\limits_{x \to c} f(x)}{\lim\limits_{x \to c} g(x)}\) dengan \(\lim\limits_{x \to c} g(x) \neq 0\)
Maka
\[\begin{align*} \lim\limits_{x \to 0} \frac{1-2\,\sin{x}}{\cos{x}} &= \frac{\lim\limits_{x \to 0} (1-2\,\sin{x})}{\lim\limits_{x \to 0} \cos{x}} \\ &= \frac{1-2\cdot{0}}{1} = \frac{1}{1}=1 \end{align*}\]
Ingat:
\(\lim\limits_{x \to c} \left( f(x) \right)^n = \left( \lim\limits_{x \to c} f(x) \right)^n\)
Maka
\[\begin{align*} \lim\limits_{x \to \frac{1}{6}\pi} \left(1-\sin^2{x}\right)^{3} &= \lim\limits_{x \to \frac{1}{6}\pi} \left(\cos^2{x}\right)^{3} \\ &= \lim\limits_{x \to \frac{1}{6}\pi} \left(\cos{x}\right)^{2\times{3}} \\ &= \left(\lim\limits_{x \to \frac{1}{6}\pi}\cos{x}\right)^{6} \\ &= \left(\frac{1}{2}\sqrt{3}\right)^{6} \\ &= \frac{27}{64} \end{align*}\]
Ingat:
\(\lim\limits_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{\lim\limits_{x \to c} f(x)}\)
Maka
\[\begin{align*} \lim\limits_{x \to \frac{1}{3}\pi} \sqrt{\sin^2{x}+\cos{x}} &= \sqrt{\lim\limits_{x \to \frac{1}{3}\pi} (\sin^2{x}+\cos{x})} \\ &= \sqrt{\lim\limits_{x \to \frac{1}{3}\pi}\sin^2{x} + \lim\limits_{x \to \frac{1}{3}\pi} \cos{x})} \\ &= \sqrt{\left(\lim\limits_{x \to \frac{1}{3}\pi}\sin{x}\right)^2 + \frac{1}{2}} \\ &= \sqrt{\left(\frac{1}{2}\sqrt{3}\right)^2 + \frac{1}{2}} \\ &= \sqrt{\frac{3}{4} + \frac{2}{4}} = \sqrt{\frac{5}{4}} = \frac{1}{2}\,\sqrt{5} \end{align*}\]
Hukum substitusi:
Jika \(f(x)\) kontinu
seperti:
- \(f(x)\) fungsi polinomial, maka: \[\lim\limits_{x \to c} f(x) = f(c)\]
- \(f(x)\) fungsi rasional, \(f(x)=\dfrac{g(x)}{h(x)}\) dan \(f(c)\) terdefinisi, maka: \[\lim\limits_{x \to c} f(x) = f(c)=\frac{g(c)}{h(c)}\]
Contoh 2
Tentukan nilai \(\lim\limits_{x \to \pi} \cos{x}(1-\sin{x})\).
Jawab
Karena fungsi \(f(x)=\cos{x}(1-\sin{x})\) kontinu pada \(x\in\mathbb{R}\), maka:
\[\begin{align*}\lim\limits_{x \to \pi} \cos{x}(1-\sin{x}) &= \cos{\pi}(1-\sin{\pi}) \\ &= 1\times(1-0) \\ &= 1 \end{align*}\]
Tentukan nilai \(\lim\limits_{x \to 0} \dfrac{\cos{x}}{1-\sin{x}}\).
Jawab
Karena fungsi \(f(x)=\dfrac{\cos{x}}{1-\sin{x}}\) kontinu pada saat nilai \(x\) di sekitar \(0\), maka:
\[\begin{align*}\lim\limits_{x \to 0} \dfrac{\cos{x}}{1-\sin{x}} &= \frac{\cos{0}}{1-\sin{0}} \\ &= \frac{1}{1-0} = 1 \end{align*}\]
Teorema Apit:
Untuk \(I\) adalah interval nilai \(x\in\mathbb{R}\) dengan \(a<x<b\), \(c\in I\), dan \(g(x) \leq f(x) \leq h(x)\) untuk setiap \(x \in I\), jika \(\lim\limits_{x \to c} g(x) = L\) dan \(\lim\limits_{x \to c} h(x) = L\), maka \(\lim\limits_{x \to c} f(x) = L\)
Teorema Apit biasa disebut juga Sequeeze Teorem atau Teorema Sandwich.
Contoh 3
Sifat-sifat Limit (1)
\(\lim\limits_{x\to{c}}\sin{x}=\sin{c}\,\) dan \(\,\lim\limits_{x\to{c}}\cos{x}=\cos{c}\)
\(\lim\limits_{x\to{0}}\dfrac{\sin{x}}{x}=1\,\) dan \(\,\lim\limits_{x\to{0}}\dfrac{x}{\sin{x}}=1\)
\(\lim\limits_{x\to{0}}\dfrac{\tan{x}}{x}=1\,\) dan \(\,\lim\limits_{x\to{0}}\dfrac{x}{\tan{x}}=1\)
Contoh 4
Sifat-sifat Limit (2)
\(\lim\limits_{x\to{0}}\dfrac{\sin{ax}}{bx}=\frac{a}{b}\,\) dan \(\,\lim\limits_{x\to{0}}\dfrac{ax}{\sin{bx}}=\frac{a}{b}\)
\(\lim\limits_{x\to{0}}\dfrac{\tan{ax}}{bx}=\frac{a}{b}\,\) dan \(\,\lim\limits_{x\to{0}}\dfrac{ax}{\tan{bx}}=\frac{a}{b}\)
\(\lim\limits_{x\to{0}}\dfrac{\sin{ax}}{\tan{bx}}=\frac{a}{b}\,\) dan \(\,\lim\limits_{x\to{0}}\dfrac{\tan{ax}}{\sin{bx}}=\frac{a}{b}\)
Contoh 5
\(x\to{c}\,\,\,\equiv\,\,\,(x-c)\to{0}\)
Contoh 6
Manipulasi Ekspresi Limit Fungsi
Ingat
- \(\cos{x}=\sin{(\frac{1}{2}\pi-x)}=\sin{-(x-\frac{1}{2}\pi)}=-\sin{(x-\frac{1}{2}\pi)}\)
- \(1-\cos^2{ax}=\sin^2{ax}\)
- \(1-\cos{2ax}=2\sin^2{ax}\)
- \(\sin{ax}+\sin{bx}=2\,\sin{\frac{1}{2}(a+b)x}\,\cos{\frac{1}{2}(a-b)x}\)
- \(\sin{ax}-\sin{bx}=2\,\cos{\frac{1}{2}(a+b)x}\,\sin{\frac{1}{2}(a-b)x}\)
- \(\cos{ax}+\cos{bx}=2\,\cos{\frac{1}{2}(a+b)x}\,\cos{\frac{1}{2}(a-b)x}\)
- \(\cos{ax}-\cos{bx}=-2\,\sin{\frac{1}{2}(a+b)x}\,\sin{\frac{1}{2}(a-b)x}\)
- \(\tan{ax}+\tan{bx}=\left(\tan{(ax+bx)}\right)\times\left( 1 - \tan{ax}\,\tan{bx} \right)\)
- \(\tan{ax}-\tan{bx}=\left(\tan{(ax-bx)}\right)\times\left( 1 + \tan{ax}\,\tan{bx} \right)\)