Limit di Ketakhinggaan Suatu Fungsi
Limit suatu fungsi untuk \(x\to\infty\) adalah nilai limit fungsi dengan nilai x mendekati tak hingga.
Perhatikan pasangan nilai 𝑥 dan \(\dfrac{1}{𝑥}\) berikut, menjelaskan bahwa \(\lim\limits_{x\to\infty}\dfrac{1}{x}=0\)
\(\dfrac{1}{x}\) |
1 |
0,5 |
0,2 |
0,1 |
0,01 |
0,001 |
0,000001 |
… |
\(\to{0}\) |
Limit di Ketakhinggaan Fungsi Aljabar
Tujuan Pembelajaran:
Menentukan nilai limit di ketakhinggaan fungsi alajabr dalam bentuk fungsi rasional dan irasional (bentuk akar).
Limit di Ketakhinggaan Fungsi Rasional
\(\lim\limits_{x\to{\color{blue}+\infty}}\dfrac{1}{x}=0\) dan \(\lim\limits_{x\to{\color{red}-\infty}}\dfrac{1}{x}=0\)
Contoh 1
\(\begin{flalign*}
\lim\limits_{x\to{\color{blue}+\infty}}\dfrac{2^{50}}{x} &= 2^{50}\times\lim\limits_{x\to{\color{blue}+\infty}}\dfrac{1}{x} \\
&= 2^{50}\times{0}=0
\end{flalign*}\)
\(\begin{flalign*}
\lim\limits_{x\to{\color{red}-\infty}}\dfrac{2^{2024}}{x} &= 2^{2024}\times\lim\limits_{x\to{\color{red}-\infty}}\dfrac{1}{x} \\
&= 2^{2024}\times{0}=0
\end{flalign*}\)
\(\lim\limits_{x\to\infty} \dfrac{ax^m +b}{px^n +q} =
{\left\{\begin{array}{cll}
a\;\cdot\; \infty & \text{; untuk } m \text{ > } n & \\
\dfrac{a}{p} & \text{; untuk } m = n & \\
0 & \text{; untuk } m \text{ < } n & \end{array}\color{white}\right\}}\)
Contoh 2
\(\begin{flalign*}
&\lim\limits_{x\to\infty} \dfrac{6x^5-4}{2x^3+100}\times\dfrac{\frac{1}{x^3}}{\frac{1}{x^3}} \\
&= \lim\limits_{x\to\infty} \dfrac{6x^2-\frac{4}{x^3}}{2+\frac{100}{x^3}} \\
&= \dfrac{\infty-0}{2+0}=\infty
\end{flalign*}\)
\(\begin{flalign*}
&\lim\limits_{x\to\infty} \dfrac{6x^5-4}{3x^5+81}\times\dfrac{\frac{1}{x^5}}{\frac{1}{x^5}} \\
&= \lim\limits_{x\to\infty} \dfrac{6-\frac{4}{x^5}}{3+\frac{81}{x^5}} \\
&= \dfrac{6-0}{3+0}=\dfrac{6}{3}=2
\end{flalign*}\)
\(\begin{flalign*}
&\lim\limits_{x\to\infty} \dfrac{2x^3+100}{3x^5+81}\times\dfrac{\frac{1}{x^5}}{\frac{1}{x^5}} \\
&= \lim\limits_{x\to\infty} \dfrac{\frac{2}{x^2}+\frac{100}{x^5}}{3+\frac{81}{x^5}} \\
&= \lim\limits_{x\to\infty} \dfrac{0+0}{3+0} =0
\end{flalign*}\)
![wave](../../assets/imgs/wave.svg)
Limit di Ketakhinggaan Fungsi Bentuk akar
\(\lim\limits_{x\to\infty} \left( \sqrt{ax+b}-\sqrt{px+q} \right)\)
\(= \lim\limits_{x\to\infty} \left( \sqrt{ax+b}-\sqrt{px+q} \right) \times \dfrac{ \sqrt{ax+b} + \sqrt{px+q}}{ \sqrt{ax+b} + \sqrt{px+q}}\)
\(= \lim\limits_{x\to\infty} \dfrac{ ax+b-(px+q)}{ \sqrt{ax+b} + \sqrt{px+q}}\)
\(= \lim\limits_{x\to\infty} \dfrac{ (a-p)x+(b-q)}{ \sqrt{ax+b} + \sqrt{px+q}}
= {\left\{
\begin{array}{ll}
0 & \text{; untuk } a = p \\
(a-p)\cdot\infty & \text{; untuk } a \neq p
\end{array}
\color{white}\right\}}\)
Contoh 3
\(\small\begin{flalign*}&\lim\limits_{x\to\infty} \left( \sqrt{4x-16}-\sqrt{4x+9} \right) \\
&= \lim\limits_{x\to\infty} \left( \sqrt{4x-16}-\sqrt{4x+9} \right) \times \dfrac{ \sqrt{4x-16} + \sqrt{4x+9}}{ \sqrt{4x-16} + \sqrt{4x+9}} \\
&= \lim\limits_{x\to\infty} \dfrac{ 4x-16-4x-9}{ \sqrt{4x-16} + \sqrt{4x+9}} \\
& = \lim\limits_{x\to\infty} \dfrac{-25}{ \sqrt{4x-16} + \sqrt{4x+9}} = 0\end{flalign*}\)
Cara lain
Diketahui \(a=4\), \(b=-16\), \(p=4\), dan \(q=9\).
Karena \(a=4=p\), maka
\(\small\lim\limits_{x\to\infty} \left( \sqrt{4x-16}-\sqrt{4x+9} \right) = 0\)
\(\lim\limits_{x\to\infty} \left( \sqrt{ax^2+bx+c}-\sqrt{px^2+qx+r} \right)\)
\(= \lim\limits_{x\to\infty} \left( \sqrt{ax^2+bx+c}-\sqrt{px^2+qx+r} \right) \times \dfrac{ \sqrt{ax^2+bx+c}+\sqrt{px^2+qx+r}}{ \sqrt{ax^2+bx+c}+\sqrt{px^2+qx+r}}\)
\(= \lim\limits_{x\to\infty} \dfrac{ ax^2+bx+c-(px^2+qx+r)}{ \sqrt{ax^2+bx+c} + \sqrt{px^2+qx+r}}\)
\(= \lim\limits_{x\to\infty} \dfrac{ (a-p)x^2+(b-q)x+(c-r)}{ \sqrt{ax^2+bx+c} + \sqrt{px^2+qx+r}}
= {\left\{
\begin{array}{ll}
\dfrac{b-q}{2\sqrt{a}} & \text{; untuk } a = p \\
(a-p)\cdot\infty & \text{; untuk } a \neq p
\end{array}
\color{white}\right\}}\)
Contoh 4
\(\small\begin{flalign*}
&\lim\limits_{x\to\infty} \left( \sqrt{x^2+x}-\sqrt{x^2-5x} \right) \\
&= \lim\limits_{x\to\infty} \left( \sqrt{x^2+x+1}-\sqrt{x^2-5x} \right) \times \dfrac{\sqrt{x^2+x} + \sqrt{x^2-5x}}{\sqrt{x^2+x} + \sqrt{x^2-5x}} \\
&= \lim\limits_{x\to\infty} \dfrac{x^2+x - \left( x^2-5x \right)}{\sqrt{x^2+x}+\sqrt{x^2-5x}} \\
&= \lim\limits_{x\to\infty} \dfrac{1-(-5)}{\sqrt{1+\frac{1}{x}}+\sqrt{1-\frac{5}{x}}}\times\frac{x}{x} \\
&= \dfrac{1-(-5)}{\sqrt{1+0} + \sqrt{1+0}}= \dfrac{1-(-5)}{2\sqrt{1}}=\dfrac{6}{2}=3
\end{flalign*}\)
Cara lain
Diketahui \(a=1\), \(b=1\), \(c=0\), \(p=1\), \(q=-5\), dan \(r=0\).
Karena \(a=1=p\), maka
\(\small\begin{flalign*}
&\lim\limits_{x\to\infty} \left( \sqrt{x^2+x}-\sqrt{x^2-5x} \right) \\
&= \frac{b-q}{2\sqrt{a}} = \frac{1-(-5)}{2\sqrt{1}} = \frac{6}{2}=3
\end{flalign*}\)
\(\begin{flalign*}
&\lim\limits_{x\to\infty} \left( \sqrt{9x^2+6x+1}-3x+ 2 \right) \\
&= 2 + \lim\limits_{x\to\infty} \left( \sqrt{9x^2+6x+1}-3x \right) \\
&= 2 + \lim\limits_{x\to\infty} \left( \sqrt{9x^2+6x+1}-\sqrt{9x^2} \right) \\
&= 2 + \dfrac{6-0}{2\sqrt{9}}=2+\dfrac{6}{6}=2+1=3
\end{flalign*}\)
\(\begin{flalign*}
&\lim\limits_{x\to\infty} \left( 2x - 3 - \sqrt{4x^2-16x} \right) \\
&= -3 + \lim\limits_{x\to\infty} \left( 2x-\sqrt{4x^2-16x} \right) \\
&= -3 + \lim\limits_{x\to\infty} \left( \sqrt{4x^2}-\sqrt{4x^2-16x} \right) \\
&= -3 + \dfrac{0-(-16)}{2\sqrt{4}} = -3 + \dfrac{16}{4}=-3+4=1
\end{flalign*}\)
\(\begin{flalign*}
&\lim\limits_{x\to\infty} \left( 3x - \sqrt{4x^2-8x} - \sqrt{x^2-6x}\right) \\
&\lim\limits_{x\to\infty} \left( 2x - \sqrt{4x^2-8x} + x - \sqrt{x^2-6x}\right) \\
&= \lim\limits_{x\to\infty} \left( \sqrt{4x^2} - \sqrt{4x^2-8x} + \sqrt{x^2} - \sqrt{x^2-6x}\right) \\
&= \dfrac{0-(-8)}{2\sqrt{4}} + \dfrac{0-(-6)}{2\sqrt{1}} \\
&= \dfrac{8}{4} + \dfrac{6}{2}=2+3 = 7
\end{flalign*}\)
![wave](../../assets/imgs/wave.svg)
Limit di Ketakhinggaan Fungsi Trigonometri
-
\(\lim\limits_{x\to{\infty}} \sin{\frac{1}{x}} = \sin{0} = 0\)
-
\(\lim\limits_{x\to{\infty}} \cos{\frac{1}{x}} = \cos{0} = 1\)
-
\(\lim\limits_{x\to{\infty}} x\sin{\frac{1}{x}} = \lim\limits_{x\to{\infty}} \dfrac{1}{\frac{1}{x}}\sin{\frac{1}{x}}\)
\(= \lim\limits_{x\to{\infty}} \dfrac{\sin{\frac{1}{x}}}{\frac{1}{x}} \qquad{\small\color{olive}\text{Misalkan }p = \frac{1}{x}\text{, sehingga } x\to{\infty} \equiv p\to{0}}\)
\(= \lim\limits_{p\to{0}} \dfrac{\sin{p}}{p} = 1\)
-
\(\lim\limits_{x\to{\infty}} \cos^{-1}{\frac{1}{x}} = \cos^{-1}{0} = \frac{\pi}{2}\)
Contoh 5
Misalkan \(p=\frac{1}{x}\), sehingga \(x\to{\infty} \equiv p\to{0}\)
\(\begin{flalign*}
\lim\limits_{x\to\infty} 2x\,\sin{\frac{1}{4x}}
&= \lim\limits_{x\to\infty} \frac{2}{\frac{1}{x}}\,\sin{\left(\frac{1}{4}\cdot\frac{1}{x}\right)} \\
&= 2\times\lim\limits_{x\to\infty} \frac{\sin{\left(\frac{1}{4}\cdot\frac{1}{x}\right)}}{\frac{1}{x}} \\
&= 2\times\lim\limits_{p\to{0}} \frac{\sin{\frac{1}{4}p}}{p} \\
&= 2\times\frac{1}{4}=\frac{1}{2}
\end{flalign*}\)
![wave](../../assets/imgs/wave.svg)
Soal Jawab Limit Fungsi di Ketakhinggaan
\(\begin{flalign*}
\lim\limits_{x\to\infty} \frac{4x^2(2x^4-x^3+x-1)}{(2x^3+3x-5)^2}
&= \lim\limits_{x\to\infty} \frac{4x^2(2x^4)}{(2x^3)^2} \\
&= \lim\limits_{x\to\infty} \frac{8x^6}{4x^6} \\
&= \frac{8}{4} = 2
\end{flalign*}\)
\(\begin{flalign*}
\lim\limits_{x\to\infty} \dfrac{6x^3-3x^2+3x-1}{\sqrt{4x^6-6x^4+10}}
&= \lim\limits_{x\to\infty} \dfrac{6x^3}{\sqrt{4x^6}} \\
&= \lim\limits_{x\to\infty} \dfrac{6x^3}{2x^3} \\
&= \frac{6}{2} = 3
\end{flalign*}\)
\(\begin{flalign*}
\lim\limits_{x\to\infty} \left( \sqrt{16x^2 + 15x -1} - \sqrt{16x^2-9x+1} \right)
&= \frac{15-(-9)}{2\sqrt{16}} & {\color{brown}\small a=16=p} \\
&=\frac{24}{2\times{4}} \\
&= 3
\end{flalign*}\)
\(\begin{flalign*}
\lim\limits_{x\to\infty} \left( 5x+1-\sqrt{25x^2 - 10x +1} \right)
&= 1 + \lim\limits_{x\to\infty} \left( \sqrt{25x^2}-\sqrt{25x^2 - 10x +1} \right) \\
&= 1+\frac{0-(-10)}{2\sqrt{25}} \\
&=1+\frac{10}{2\times{5}} \\
&= 1+1=2
\end{flalign*}\)
\(\begin{flalign*}
\lim\limits_{x\to\infty} \left( \sqrt{49x^2 + 14x +1} -7x-5 \right)
&= -5 + \lim\limits_{x\to\infty} \left( \sqrt{49x^2 + 14x +1} - \sqrt{49x^2} \right) \\
&= -5+\frac{14-0}{2\sqrt{49}} \\
&=-5+\frac{10}{2\times{7}} \\
&= -5+1=-4
\end{flalign*}\)
Misalkan \(p=\frac{1}{x^2}\), sehingga \(x\to{\infty} \equiv p\to{0}\)
\(\begin{flalign*}
\lim\limits_{x\to\infty} 2x^2 \sin{\frac{1}{4x^2}} &= \lim\limits_{x\to\infty} \frac{2}{\frac{1}{x^2}} \sin{\left(\frac{1}{4}\cdot\frac{1}{x^2}\right)} \\
&= 2\times\lim\limits_{x\to\infty} \frac{\sin{\left(\frac{1}{4}\cdot\frac{1}{x^2}\right)}}{\frac{1}{x^2}} \\
&= 2\times\lim\limits_{p\to{0}} \frac{\sin{\frac{1}{4}p}}{p} \\
&= 2\times{\frac{1}{4}}=\frac{1}{2}
\end{flalign*}\)
Misalkan \(p=\frac{1}{x}\), sehingga \(x\to{\infty} \equiv p\to{0}\)
\(\begin{flalign*}
\lim\limits_{x\to\infty} 2x^2 \sin^2{\frac{1}{4x}}
&= \lim\limits_{x\to\infty} \frac{2}{\left(\frac{1}{x}\right)^2} \sin^2{\left(\frac{1}{4}\cdot\frac{1}{x}\right)} \\
&= 2\times\lim\limits_{x\to\infty} \frac{\sin^2{\left(\frac{1}{4}\cdot\frac{1}{x}\right)}}{\left(\frac{1}{x}\right)^2} \\
&= 2\times\lim\limits_{p\to{0}} \frac{\sin^2{\frac{1}{4}p}}{p^2} \\
&= 2\times\lim\limits_{p\to{0}} \frac{\sin{\frac{1}{4}p}}{p}\times\lim\limits_{p\to{0}} \frac{\sin{\frac{1}{4}p}}{p} \\
&= 2\times{\frac{1}{4}}\times{\frac{1}{4}}=\frac{1}{8}
\end{flalign*}\)
Periksa syarat kekontinuan fungsi \(y=f(x)\) di \(x=2\):
-
\(f(2) = 2\,\) terdefinisi (syarat ke-1 terpenuhi)
-
\(\lim\limits_{x\to{2}^{-}} f(x) = \lim\limits_{x\to{2}} (2x-2) = 2(2)-2 = 2\)
dan
\(\lim\limits_{x\to{2}^{+}} f(x) = \lim\limits_{x\to{2}} (x^2-2) = 2^2-2 = 4-2=2\)
Diperoleh Limit kiri = limit kanan (syarat ke-2 terpenuhi)
-
\(\lim\limits_{x\to{2}} f(x) = 2 = f(2)\) (syarat ke-3 terpenuhi)
Karena ketiga syarat kekontinuan fungsi \(\,y=f(x)\,\) di \(\,x=2\,\) terpenuhi, maka \(\,y=f(x)\,\) kontinu di \(\,x=2\). \(\begin{flalign*}
\end{flalign*}\)
Asimtot datarnya
\(\begin{flalign*}
y &= \lim\limits_{x\to{\infty}} \frac{4x^2-1}{x^2-x-2} \\
&= \frac{4}{1} \\
&= 4
\end{flalign*}\)
Asimtot tegaknya
\(\begin{aligned}
x^2-x-2 &= 0 \\
(x+1)(x-2) &= 0 \\
x+1 &= 0 & x-2 &= 0 & \\
x &= -1 & x &= 2 &
\end{aligned}\)
Back to top